Graph homomorphisms: structure and symmetry
نویسندگان
چکیده
This paper is the first part of an introduction to the subject of graph homomorphism in the mixed form of a course and a survey. We give the basic definitions, examples and uses of graph homomorphisms and mention some results that consider the structure and some parameters of the graphs involved. We discuss vertex transitive graphs and Cayley graphs and their rather fundamental role in some aspects of graph homomorphisms. Graph colourings are then explored as homomorphisms, followed by a discussion of various graph products.
منابع مشابه
On Symmetry of Some Nano Structures
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...
متن کاملCalculation of Buckling Load and Eigen Frequencies for Planar Truss Structures with Multi-Symmetry
In this paper, the region in which the structural system is situated is divided into four subregions, namely upper, lower, left and right subregions. The stiffness matrix of the entire system is then formed and using the existing direct symmetry and reverse symmetry, the relationships between the entries of the matrix are established. Examples are included to illustrate the steps of the method.
متن کاملLocally constrained graph homomorphisms - structure, complexity, and applications
A graph homomorphism is an edge preserving vertex mapping between two graphs. Locally constrained homomorphisms are those that behave well on the neighborhoods of vertices — if the neighborhood of any vertex of the source graph is mapped bijectively (injectively, surjectively) to the neighborhood of its image in the target graph, the homomorphism is called locally bijective (injective, surjecti...
متن کاملHomomorphisms are indeed a good basis for counting: Three fixed-template dichotomy theorems, for the price of one
Many natural combinatorial quantities can be expressed by counting the number of homomorphisms to a fixed relational structure. For example, the number of 3-colorings of an undirected graph $G$ is equal to the number of homomorphisms from $G$ to the $3$-clique. In this setup, the structure receiving the homomorphisms is often referred to as a template; we use the term template function to refer...
متن کاملMining Tree Patterns with Partially Injective Homomorphisms
One of the main differences between ILP and graph mining is that while pattern matching in ILP is mainly defined by homomorphism (subsumption), it is the subgraph isomorphism in graph mining. Using that subgraph isomorphisms are injective homomorphisms, we bridge the gap between the two pattern matching operators with partially injective homomorphisms, which are homomorphisms requiring the inje...
متن کامل